
This project has received funding from the European Unionôs Seventh Framework Programme for research, technological development
and demonstration

FP7-ICT-2013-10

Policy Compass

WP3 - Policy Compass Implementation

D3.1 ï Policy Compass platform ï year 1

Due date: 30.09.2014 Delivery Date: 27 October 14

Authors: Rouven Br¿es (LIQD), Nicolas Dietrich (LIQD), Nadia Politou (ATOS), Miquel

Mila Prat (ATOS), Lena Farid (Fraunhofer), Alan Mayer (Fraunhofer), Fabian Kirstein

(Fraunhofer), Spyros Mouzakitis (NTUA), Nauman Chaudhry (UBRUN)

Dissemination level: Public Nature of the Deliverable: Prototype

Internal Reviewers: Habin Lee (UBRU), Nadia Politou & Miquel Mila (ATOS), Yury

Glikman (Fraunhofer)

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 2 of 47

Executive Summary:

The deliverable D3.1 titled ñPolicy Compass platform ï year 1ò provides an overview over

the implementation of the first prototype version of the Policy Compass platform including its

basis Policy Compass services required for collection of the data, the technical deployment of

the platform and a short usage guide that navigates the user/reader through the platform. To

this end the deliverable provides a short overview over the various services and how they are

implemented on the Policy Compass platform. It concludes with a brief overview of planned

next steps for the forthcoming iteration.

This deliverable is the output of the work package WP3 ñPolicy Compass Implementationò

and the first of three iterative works that document the technical implementation of the Policy

Compass platform (the others being ñD3.2 Policy Compass platform ï year 2ò and D3.3

Policy Compass platform ï year 3ò).

Main objectives of the prototype are on the one hand practical insights into the planned

concepts and on the other hand a feasibility analysis of the implementation and in particular

the service-oriented architecture approach.

Disclaimer: The information and views set out in this publication are those of the author(s)

and do not necessarily reflect the official opinion of the European Communities. Neither the

European Union institutions and bodies nor any person acting on their behalf may be held

responsible for the use which may be made of the information contained therein.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 3 of 47

Table of Contents

Abbreviations .. 5

Partner Name corresponding to Abbreviation in Policy Compass DoW .. 6

List of figures .. 6

1. Introduction ... 8

2. Policy Compass Platform Implementation ï Year 1 ... 9

OVERVIEW / OVERALL STRUCTURE ... 9
2.1. METRICS MANAGER ... 9

2.1.1. Functionalities ... 9
2.1.2. Implementation details .. 10
2.1.3. API... 10

2.2. VISUALISATION MANAGER .. 12
2.2.1. Functionalities ... 12
2.2.2. Implementation details .. 13
2.2.3. API... 13

2.3. HISTORIC EVENT MANAGER .. 15
2.3.1. Functionalities ... 15
2.3.2. Implementation details .. 15
2.3.3. API... 15

2.4. FCM SERVICE .. 16
2.4.1. Functionalities ... 16
2.4.2. Implementation details .. 17
2.4.3. API... 17

2.5. DELIBERATION SERVICE ... 18
2.5.1. Functionalities ... 18
2.5.2. Implementation details .. 18
2.5.3. API... 19

2.6. SEARCH SERVICE ... 19
2.6.1. Functionalities ... 19
2.6.2. Implementation details .. 20
2.6.3. API... 20

2.7. AUTHENTICATION SERVICE .. 22
2.7.1. Functionalities ... 22
2.7.2. Implementation details .. 22
2.7.3. API... 22

2.8. REFERENCE POOL ... 22
2.8.1. Functionalities ... 22
2.8.2. Implementation details .. 23
2.8.3. API... 23

2.9. FRONTEND INTEGRATION ... 23

3. Platform Deployment .. 24

3.1. SOURCE CODE LOCATION AND STRUCTURE ... 24
3.2. DEPLOYMENT INSTRUCTIONS ... 25
3.3. LICENSE INFORMATION .. 26

4. Platform usage guide ... 26

4.1. POLICY COMPASS HOME .. 26
4.2. POLICY COMPASS CREATE PAGE .. 27
4.3. POLICY COMPASS BROWSE .. 27
4.4. VISUALISATION AND MANAGEMENT OF METRICS .. 30

4.4.1. Metrics Manager .. 30
4.4.2. Visualisations Manager ... 34

4.5. CREATION AND SIMULATION OF CAUSAL POLICY MODELS.. 40

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 4 of 47

4.6. HISTORICAL EVENTS MANAGER .. 43
4.7. DELIBERATION ... 44

5. Conclusion and next steps ... 45

5.1. NEXT STEPS .. 45

6. References ... 47

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 5 of 47

Abbreviations

API Application Program Interface

CO Confidential, only for members of the Consortium (including the Commission

Services)

CSS Cascading Style Sheet

CSV Comma Separated Value

D Deliverable

DRF Django REST Framework

DOM Document Object Model

DoW Description of Work

FCM Fuzzy Cognitive Maps

FP7 Seventh Framework Programme

GUI Graphical user Interface

JSON JavaScript Object Notation

SOA Service Oriented Architecture

HTTP Hypertext Transfer Protocol

IPR Intellectual Property Rights

MS Milestone

OS Open Source

ORM Object Relational Mapping

REST Representational State Transfer

URL Uniform Resource Locator

WP Work Package

XLS Microsoft Excel spreadsheet

ZODB Zope Object Database

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 6 of 47

Partner Name corresponding to Abbreviation in Policy Compass DoW

Fraunhofer Fraunhofer-Gesellschaft zur Fºrderung der angewandten Forschung e.V.

UBRUN Brunel University

ATOS ATOS Spain SA

LIQD Liquid Democracy e.V.

NTUA National Technical University of Athens

ITMO Saint Petersburg National Research University of Information Technologies

 Mechanics and Optics

CCC Cambridgeshire County Council

List of figures

Figure 1: Policy Compass Home Page .. 26

Figure 2: Policy Compass Create Page ... 27

Figure 3: Policy Compass Browse .. 28

Figure 4: Full index search on Policy Compass .. 29

Figure 5: Filter results based on search item type ... 29

Figure 6: Metrics Metadata Editor - Dataset Editor .. 30

Figure 7: Metrics Metadata Editor - Metric Details .. 31

Figure 8: Metrics Metadata Editor - Import via File ... 32

Figure 9: Metrics Detail Page ... 33

Figure 10: Metrics Detail Page - Dataset View ... 34

Figure 11: Visualisations Viewer .. 35

Figure 12: Visualisations Designer ... 36

Figure 13: Visualisation Manager ï Add metric ... 37

Figure 14: Visualisations Designer - Configure metric ... 37

Figure 15: Visualisation Designer - Annotate graph with a historical event ... 38

Figure 16: Visualisation Designer ï Historical Events ... 39

Figure 17: Visualisation Designer ï Metadata Editor ... 39

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 7 of 47

Figure 18: FCM Editor interface for modelling .. 40

Figure 19: FCM Editor - Concept Metadata ... 41

Figure 20: FCM Editor - Definition of Causal Relationships between Concepts ... 42

Figure 21: FCM Editor ï Save Model ... 43

Figure 22: Historical Event Detail .. 43

Figure 23: Historical Events Editor ... 43

Figure 24: Content with Discussions .. 44

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 8 of 47

1. Introduction

The present deliverable D3.1 ñPolicy Compass platform ï year 1ò aims at documenting the

implementation of the various Policy Compass components/services in the first prototype

version of the Policy Compass platform year 1. The overall objective of WP3 is to implement

the Policy Compass platform according the specifications provided in WP2 and integrate it in

the selected eParticipation tool and social networks.

This deliverable, ñD3.1 Policy Compass platform ï Year 1ò is the first of three iterations for

this work package. It has been prepared as part of the projectôs agile management process and

is dedicated to implement the Policy Compass platform in all its aspects to fulfil the minimum

functional and technical requirements needed for the implementation of the user stories that

have been selected to enter the sprints for year 1 of the Policy Compass project.

The document is structured into three main parts. After outlining the functionalities,

implementation details and APIs of all services that are implemented on the Policy Compass

platform (section 2), the document briefly outlines the general platform deployment (section

3). Section 4 is a short platform usage guide, explaining the structure of the platform. The

deliverable concludes in section 5 with a brief outline of the next steps that will be taken in

the second project year of WP3.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 9 of 47

2. Policy Compass Platform Implementation ï Year 1

Overview / Overall structure

Policy Compass is built as a 3-tier service-oriented architecture (SOA), consisting of three

layers - the application layer, the core services layer and the data storage layer, as described in

further detail in deliverable ñD2.1 Policy Compass Architecture ï year 1ò [1], section 8.

The application layer is implemented as an AngularJS application. It contains the user

interface for the metric manager, the visualisation manager, the historic event manager, the

FCM editor and the search service. Furthermore, it contains glue code, which allows

embedding of the deliberation service and the authentication service frontends, which in turn

talk to the respective backend service components. All application layer modules

communicate solely with the REST APIs of the backend components.

The core services layer contains the business logic of the various services. Each service

represents a closed set of information and functionality. All services expose their functionality

through a RESTful API. Metrics manager, visualisation manager, historic event manager,

search manager and reference data pool are implemented as Django apps making use of the

Django REST Framework. The FCM manager is written in Java, providing a Java API for

RESTful Web Services (JAX-RS). The deliberation service, Adhocracy, is implemented in

Python as a Pyramid application. Adhocracy also acts as the authentication backend service.

In year two, the argumentation service Carneades will join the service too, a formal

argumentation mapping tool is written in Clojure.

The data storage layer is mostly realized with the PostgreSQL database, which the Django

based services, as well as the FCM backend, uses to store their data. The deliberation service

uses the ZODB as its data store.

2.1. Metrics Manager

2.1.1. Functionalities

The Metrics Manager service provides an API to create, update, list and delete prosperity

metrics. Such metrics consist out of metadata and the tabular metric data itself. The metadata

describes the context and origin of the data, e.g. publisher, spatial information, keywords, etc.

In addition, the metadata is classified by the namespaces of the Reference Pool (more

information in section 2.8). The actual data represents a table with a variable number of rows.

Each row stands for the value of the metric in a specific time interval, expanded with user-

defined additional data. Thus the metric data has three compulsory columns (start-date, end-

date and value) and an arbitrary number of extra columns, providing the possibility of multi-

dimensional data. The domain of each extra column has to be taken out of a given namespace.

The interface (API) of the Metrics Manager allows to browse through all metrics, search by

keywords and modify the sorting. The result list can be limited furthermore by applying

filters, consisting of the global namespace of the Reference Pool. The actual data of a single

metric can be modified as well. The sorting of the rows can be set and the data can be limited

by applying filters for the extra columns. That allows picking the data just for specific

dimensions. In conclusion it is possible to create new metrics and alter or delete existing ones.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 10 of 47

The user interface of the Metrics Manager allows accessing those basic functionalities in an

easy way by providing form elements, which are representing the metadata and tabular data.

Furthermore it allows providing the possibility to upload a spreadsheet file (CSV, XLS,

XLSX), which is automatically used to fill the form for the tabular data. This form allows the

user to adjust the data according to the needs of the Metrics Manager. The data columns/rows

can be rotated, rows and columns can be inserted or deleted and the format of the time data

can be set.

2.1.2. Implementation details

This service is implemented as an app within a Django project1, which combines several

services of the Policy Compass platform. This project uses the Django REST framework

(DRF) to implement the functionalities as a RESTful web service. The implementation takes

advantage of the generic methods of the DRF and the rich ecosystem of Django and Python in

general. To store the data it uses the project-wide standard database PostgreSQL. The object-

relational mapper (ORM) of Django communicates with the database in order to get and write

data. This data is serialized and de-serialized from/to JSON and mapped to a respective URL

and HTTP-method. The additional options like sorting, filtering and searching are realized by

built-in methods of the DRF and are handed to the database. For the processing of the tabular

data the Python pandas library is used. This library offers high-performance data structures

and analysis tools. It comes with a SQL-like interface, supports time-based data and is

optimized on the base of C. It is used to perform manipulations on the metric data like sorting

and filtering. Therefore the data is loaded from the database into a suitable pandas data

structure. The application of pandas ensures the longevity of the Metrics Manager because it

can be adjusted to various use cases and offers a multiplicity of possibilities to manipulate the

metrics data.

The frontend of the Metrics Manager is implemented as a module of the Policy Compass

AngularJS-Frontend project and consumes the web service. It is based on the built-in modules

of AngularJS to communicate with a RESTful API. For creating, editing and displaying the

metric data the popular JavaScript library Handsontable was adopted. The library offers an

Excel-like grid and basic spreadsheet functionalities.

2.1.3. API

2.1.3.1. Get the list of metrics

Operation: GET /api/v1/metricsmanager/metrics

(Optional) parameters:

¶ page

1 This project is called Policy Compass Services and combines Metrics Manager, Historical Events Registry, Visualisation

Manager, Reference Pool, Common Libraries and the Search Manager.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 11 of 47

o The list uses pagination in order to divide the result over multiple pages. This

parameter sets the page, which is to be displayed.

¶ page_size

o Sets the size of one page. The default is 10.

¶ search

o Limits the list to metrics where the value of the parameter is either in title,

keywords, acronym or spatial

¶ language, unit, externalresource, policydomain

o Filters the list by the given Reference Pool references. The values have to be an

ID of the respective Reference Pool entity.

¶ sort

o Orders the list by created_at (issued), updated_at (modified) or title. A leading '-'

reverses the order.

2.1.3.2. Get a metric (metadata and tabular data) by ID {id}

Operation: GET /api/v1/metricsmanager/metrics/{id}

(Optional) parameters:

¶ sort

¶ Sorts the tabular data by any given column, multiple columns are possible. A leading '-'

reverses the order column

o Filters the tabular data by any column value. Multiple filters are possible.

2.1.3.3. Create metrics

Operation: POST /api/v1/metricsmanager/metrics

Data: An entire metric including meta data and data

2.1.3.4. Update a metric

Operation: PUT /api/v1/metricsmanager/metrics/{id}

Data: An entire metric including meta data and data

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 12 of 47

2.1.3.5. Delete metric

Operation: DELETE /api/v1/metricsmanager/metrics/{id}

2.2. Visualisation Manager

2.2.1. Functionalities

The visualisation manager service provides an API to create, update, list and delete

visualisations. A visualisation in the Policy Compass platform basically consists of the

graphical representation of one or more metrics, which can be annotated by one or more

historical events.

A visualisation within Policy Compass can be configured with the following parameters:

¶ Type of graph: A visualisation can be displayed in three different formats; as a line

chart, a pie chart or as a bar chart. In future versions of the platform the possibility to

plot the data in a map is expected to be developed.

¶ Graph configuration options: Depending on the type of graph used to plot the data, the

following configuration options are available; ñShow Legendò, ñShow Linesò, ñShow

Pointsò, ñShow Labelsò, ñShow Gridò and ñShow only one Y axeò.

¶ Metrics: In order to generate a visualisation at least one metric needs to be selected.

The visualisation designer provides certain flexibility on the configuration of the

metric columns on a graph, as listed below:

o From: As each metric has two date/time format rows (Start Column and End

Column), these rows can be used to configure the date time that needs to be

plot. To understand better how this data is used in the visualisation manager,

this data in a line graph corresponds to the X axes.

o Grouping: By default a graph has no grouping. Nevertheless, the user is

provided with the option to group the data by the different options available

according to the metric. The options available correspond to the variable

number of columns of the metric

¶ Events: When a metric is displayed as a line chart, the visualisation can be annotated

with any historical event that has been stored into the application. When annotating,

one can add a description of this historical event (by default this description is fulfilled

by the description of the event but it can be modified by the user) and to choose the

background colour that will be used to annotate the event in the chart.

¶ Metadata: This is the basic data of the visualisation. These data are title, description,

keywords and language.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 13 of 47

2.2.2. Implementation details

The visualisation service is implemented with the exact same technology, architecture and

characteristics as the metrics manager, detailed in 2.1.2.

The frontend of the Visualisation Manager is implemented as a module of the Policy Compass

AngularJS-Frontend project and consumes the web service. It is based on the built-in modules

of AngularJS to communicate with a RESTful API. The D3.js library is used to generate the

graphical representation of the visualisations.

2.2.3. API

2.2.3.1. Get list of visualisations

Operation: GET /api/v1/ visualizationsmanager/visualizations

(Optional) parameters:

¶ page

o The list uses pagination in order to divide the result over multiple pages. This

parameter sets the page number to be displayed.

¶ page_size

o Sets the size of one page. The default is 10.

¶ search

o Searches in title and keywords.

¶ language

o Filters the visualisations with the given language Id

¶ sort

o Order by created_at (issued), updated_at (modified) or title, a '-' reverses the

order

2.2.3.2. Get visualisation by ID {pk}

Operation: GET /api/v1/visualizationsmanager/visualizations/{pk}

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 14 of 47

2.2.3.3. Create visualisations

Operation: POST /api/v1/ visualizationsmanager/visualizations

2.2.3.4. Update a visualisation

Operation: PUT /api/v1/ visualizationsmanager/visualizations/{ id}

2.2.3.5. Delete a visualisation

Operation:

DELETE /api/v1/ visualizationsmanager/visualizations/{id}

2.2.3.6. Get list of events linked with visualisations

Operation:

GET /api/v1/ visualizationsmanager/eventsInVisualizations

2.2.3.7. Get main data of an events linked with a specific visualisation by ID {pk}

Operation:

GET /api/v1/visualizationsmanager/eventsInVisualizations/{pk}

2.2.3.8. Get list of metrics linked with visualisations

Operation:

GET /api/v1/ visualizationsmanager/metricsInVisualizations

2.2.3.9. Get main data of the metric configuration linked with a specific visualisation by ID

{ pk}

Operation:

GET /api/v1/visualizationsmanager/metricsInVisualizations/{pk}

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 15 of 47

2.3. Historic Event Manager

2.3.1. Functionalities

The Historic Events Manager service provides an API to create update list and delete

historical events. Events consist of metadata, which describes the context and origin of the

data, like start and end date, description, location, title, keywords etc. Additionally some

metadata is classified by the namespaces of the Reference Pool (more information in section

2.8).

Through the API of the Historic Events Manager it is possible to browse through all events

page wise. The API supports a filtering option by searching for a specific title or by selecting

a specific time span. Furthermore, the API allows creating new historic events and modifying

or deleting existing ones.

All functionalities, except the filtering options, are also provided by the user interface of the

Historic Events Manager. Therefore the user interface makes use of form elements, which

represent the server side metadata.

2.3.2. Implementation details

The Historic Events Manager Service is implemented as an app within the Django Policy

Compass Services Project. All Functionalities are implemented as a RESTful web service by

using the Django REST framework and its generic methods. The data is being stored within

the project-wide PostgreSQL database by assistance of the Django own object-relational

mapper. This data is serialized and de-serialized from/to JSON and mapped to a respective

URL and HTTP-method. The filtering options are implemented by making use of build-in

Django functionalities.

The frontend of the Historic Events Manager is created as an AngularJS module within the

Policy Compass frontend project. To access data of the Historic Events Manager the build-in

AngularJS modules are used to communicate with the RESTful API that has been created.

2.3.3. API

2.3.3.1. Get the list of all events

Operation: GET /api/v1/eventsmanager/events

(Optional) parameters:

¶ page

o The list uses pagination in order to divide the result over multiple pages. This

parameter sets the page, which is to be displayed.

¶ page_size

o Sets the size of one page. The default is 10.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 16 of 47

¶ title

o Limits the list to metrics where the value of the parameter is in the title of the

event

¶ start, end

o Filters all events that are within the timeframe given through the parameters.

2.3.3.2. Get an event ID {id}

Operation: GET /api/v1/eventsmanager/events/{id}

2.3.3.3. Create events

Operation: POST /api/v1/eventsmanager/events

Data: An entire event including all meta data

2.3.3.4. Update an event

Operation: PUT /api/v1/eventsmanager/events/{id}

Data: An entire event including all meta data

2.3.3.5. Delete event

Operation: DELETE /api/v1/eventsmanager/events/{id}

2.4. FCM Service

2.4.1. Functionalities

The FCM service provides an API to create, update, list and delete FCM Models. Each FCM

Model consists of FCM name, description relating to the FCM name, concepts with their

name, description, input, output, fixed output, activation function and metrics and also the

causal-relations (connections) between two concepts with their causal value (weight).

The FCM front-end provides a web based graphical user interface that allows a direct

interaction with the Policy Model Editor. In the Policy Model Editor, users can create the

FCM Model, add concepts and create connections between concepts.

To create a new FCM model, the FCM Editor provides the users with all the functionality to

build a conceptual model using the left-hand menu. In order to add concepts in the FCM

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 17 of 47

editor space, the user should click on the Concept button on the left hand side where a node

concept appears on the editor environment and a popup window will appear to get the values

of the concept. The concept is added by defining the conceptôs title, description, input,

metrics, activator and fixed output. The metrics can be chosen out of the metrics provided by

the metrics manager. Once concepts have been defined, causal relationship between the

concepts can then be added by using the arrow button that is located in the left-hand. A modal

dialog will appear after clicking the arrow button, indicating the amount of influence a

concept A has over concept B. This causal connection flow can be set to positive or negative

between concepts. Also, the weight of the connection is defined that indicates the amount

influence. Once applied, all the causal relationships and the FCM model as a whole are saved

by using the Save button where a popup window appears allowing the user to fill in the Policy

Modelôs title, description and keywords.

2.4.2. Implementation details

This service is implemented as a RESTful web service in Java with the JAX-RS reference

implementation Jersey framework. Java defines REST support via the Java Specification

Request (JSR) 311. This specification is called JAX-RS (The Java API for RESTful Web

Services). JAX-RS uses annotations to define the REST relevance of Java classes. Jersey is

the reference implementation for the JSR 311 specification. The Jersey implementation

provides a library to implement RESTful web services in a Java servlet container. To store the

data it uses the project-wide standard database system PostgreSQL. The object-relational

mapper (ORM) of Hibernate communicates with the database in order to get and write data.

This data is serialized and de-serialized from/to JSON and mapped to a respective URL and

HTTP-method.

The frontend of the FCM is implemented as a module of the Policy Compass AngularJS-

Frontend project and consumes the web service. It is based on the built-in modules of

AngularJS to communicate with a RESTful API. Cytoscape.js is used for the FCM Editor

Interface. It is an open-source graph theory (a.k.a. network) library written in JavaScript used

for graph analysis and visualisation.

2.4.3. API

2.4.3.1. Get the list of FCM models

Operation: GET /api/v1/fcmmanag er/models

2.4.3.2. Get a FCM model (concepts and their connections) by ID {id}

Operation: GET /api/v1/fcmmanager/models/{id}

2.4.3.3. Create FCM models

Operation: POST /api/v1/fcmmanager/models

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 18 of 47

Data: An entire FCM model detail including concepts and their connections.

2.4.3.4. Update a FCM model

Operation: PUT /api/v1/fcmmanager/models/{id}

Data: An entire FCM model detail including concepts and their connections.

2.4.3.5. Delete model

Operation: DELETE /api/v1/fcmmanager/models/{id}

2.5. Deliberation Service

2.5.1. Functionalities

The deliberation module allows users to deliberate about performance metrics, user created

visualisations and policy models in informal discussions. Users can rate other users'

comments.

This is realized with Adhocracy. The software Adhocracy is designed as a cooperative tool

for text editing, discourse, delegation and voting, which allows decision making with a high

number of participants. It has successfully employed different formats of e-participation,

which vary from agenda setting to consultation, collaboration and decision-making.

2.5.2. Implementation details

Coherent with the service-oriented architecture, Adhocracy is deployed as an external

component besides the other Policy Compass components. It is loosely coupled: integration

between Policy Compass and Adhocracy happens purely within the frontend.

Adhocracy is built as a client-server architecture consisting of a backend and a frontend part.

The Adhocracy backend is implemented in Python and based on the Pyramid framework.

Data is stored in a Zope Object Database (ZODB) instance. The Adhocracy backend allows to

model new content types and participation process workflows and exposes a REST API for

these. This is used by the Adhocracy frontend.

The Adhocracy frontend is implemented in Typescript, a superset of JavaScript, which adds

static typing and thus security to JavaScript. The Adhocracy frontend makes heavy use of the

AngularJS JavaScript framework.

The Adhocracy frontend can be embedded in other applications through the AdhocracySDK.

The adhocracyEmbedder AngularJS module provides easy access to the AdhocracySDK

within Policy Compass. This is used by the deliberation module as well as the authentication

module.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 19 of 47

2.5.3. API

The deliberation AngularJS module provides a directive, which allows displaying a discussion

thread related to a given object ID. If the discussion thread does not yet exist, it will be

generated on the fly.

Example:

<show- discussion data - key="metric_{{ metric.id }}"></show -

discussion>

When used within a HTML template used for metric with ID 5 (exemplarily), this will insert

the discussion thread with the ID `metric_5` into the HTML DOM. If it doesn't exist yet, it

will be created.

2.6. Search Service

2.6.1. Functionalities

The Policy Compass Search service is a search server based on Elasticsearch. It provides a

distributed, multitenant-capable full-text search engine with a RESTful web interface and

schema-free JSON documents. The Policy Compass Search service was designed with

modularity in mind thus enabling searching interoperability over different types of entities

(Events, Metrics, Visualisations, FCM models) that are exposed through different API

technologies and data formats and that could potentially reside on different servers.

More specifically the Search service provides:

¶ Rebuild Index functionality of entities to the Policy Compass search server. Rebuild

index is used to bulk insert a huge amount of un-indexed documents to the Policy

Compass search server.

¶ Real-time indexing and deletion of individual documents from the Policy Compass

Search server. Specifically when any other type of Service (e.g. Metrics Service)

creates a new entity, a real-time signal is sent to the Policy Compass search server to

index this entity.

¶ A Search Service client to be consumed by front-end technologies. The search service

client provides access to the entire Elasticsearch REST API, including a full search

Query language based on JSON. Queries can have filters associated with them as well

as grouping and clustering capabilities

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 20 of 47

2.6.2. Implementation details

The Search Service has been created as a set of RESTful APIs under the Django REST

Framework. These API handle communication with a dedicated Policy Compass Index that is

deployed on an Elasticsearch engine. Moreover, in addition to the web APIs, access to the

Search Services is also provided through Django run time commands. The Search Service

client has been wrapped as a Service function in AngularJS framework.

2.6.3. API

2.6.3.1. Indexing using Django command

To index all documents of all item types (metrics, visualizations, events) a system

administrator can issue the following command (while the other Policy Compass services are

running):

python manage.py rebuild_index

To index all documents but only specific item types (metrics, visualizations or events):

python manage.py rebuild_index 'itemt ype1' 'itemtype2'

For instance to index all documents of type metric and visualization:

python manage.py rebuild_index 'metric' 'visualization'

2.6.3.2. Indexing using web services

All indexing services are documented in detail in:

policycompass - server/api/v1/sear chmanager/

To index all documents of all item types (metrics, visualizations, events) the user can type

curl ïXPOST policycompass -

server/api/v1/searchmanager/rebuildindex

To index all documents but only specific item type (metrics, visualizations or events) the user

can type

curl ïXPOST policycompass -

server/api/v1/searchmanager/rebuildindex_<itemtype>'

For instance to index metrics only

curl - XPOST policycompass - server

/api/v1/searchmanager/rebuildindex_metric

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 21 of 47

2.6.3.3. Create or update the index of a specific item using web services

When a user creates / updates an item, the following methods can be called afterwards by the

respective service in order to update the search index

curl - XPOST policycompass - server

/api/v1/searchmanager/updateindexitem/<itemtype>/<itemid >

where is either 'metric', 'visualization' or 'event' and itemid the id of the userôs created /

updated object

For instance to update the index of metric with id 26

curl ïXPOST policycompass - server

/api/v1/searchmanager/updateindexitem/metric/26

Delete the index of a specific item using web services

When you delete an item in your database the user can call the following methods afterwards

to delete also the search index of that particular object

curl - XPOST policycompass - server

/api/v1/searchmanager/dele teindexitem/<itemtype>/<itemid>

where is either 'metric', 'visualization' or 'event' and itemid the id of the userôs created /

updated object

For instance to delete the index of metric with id 26

curl ïXPOST policycompass -

server /api/v1/searchmanager/delete indexitem/metric/26

2.6.3.4. Perform search query using the Policy compass search client

A web client can perform a search query utilizing the following function:

 searchclient.search({

 index: <the name of the userôs set Index>

 type: <the type o f the entity (e.g.

metric,visualization,eve nt)>,

 body: {

 size: <the number of paginated results to return>,

 from: <an offset to the search results>,

 query: <a json query according to the elastic

search syntax 2>

2 http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-queries.html

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 22 of 47

 }

2.7. Authentication Service

2.7.1. Functionalities

The authentication service allows users to register and login to Policy Compass accounts.

These accounts can be used by all other services to identify users. It currently doesn't provide

authorization checks, but it will do so from year 2 on.

2.7.2. Implementation details

The authentication service is provided by Adhocracy.

User accounts in Adhocracy contain user names, which can be real names or pseudonyms, an

email address and a password. The email address needs to be verified by means of clicking on

a verification link sent to the given email address. The password is stored as a salted hash

using the bcrypt algorithm.

The Policy Compass authentication service contains an AngularJS frontend module, which

provides integration with Adhocracy and a simple user indicator directive displaying whether

a user is currently logged in and, if so, its username. This module makes use of the

adhocracyEmbedder module.

2.7.3. API

In order to login or register, the Policy Compass frontend needs to embed Adhocracy.

Currently users can navigate to a login or registration page within the deliberation widget. In

the future there will be a dedicated login / registration widget.

Once a user is logged in, Adhocracy passes user data to the Authentication service, which

exposes it through its state attribute. It also sets two default HTTP header fields in the

AngularJS $http service: "X-User-Path" and "X-User-Token".

These headers are automatically sent with every HTTP request to other Policy Compass

services. Services should validate the token with Adhocracy. The latter is planned for year 2.

2.8. Reference Pool

2.8.1. Functionalities

The Reference Pool service offers fixed entities for the use in all other services. They are

forming namespaces, which categorise and sort the available data of the platform. They are

read-only via the API and can be managed through an administration page. The following

reference data are available:

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 23 of 47

¶ Policy Domains ï Specific domains, which represent political categories, e.g.

Economy, Health, Justice, etc.

¶ External Resources ï Well known sources of performance metrics like Eurostat.

¶ Units ï Offers units, e.g. to specify the values of a metric.

¶ Unit Categories ï Units are grouped into categories, like length, currency, mass, etc.

¶ Languages ï Used to tag data with a language

¶ Date Formats ï Dates may be supplied in different formats. This reference offers

expressions to specify such a format while providing data, e.g. dd.mm.yyyy, yyyy-

mm-dd.

2.8.2. Implementation details

This service is as well implemented as an app within a Django service project and uses the

DRF. For editing and creating new data within the respective reference the Django Admin-

Interface is used. It offers an automatic and generic web interface based on specifications of

the data structure of the references.

2.8.3. API

2.8.3.1. Get a list of references

Operation: GET /api/v1/references/{resource}

The parameter resource refers to the respective reference categories and can be:
unitcategories, units, dateformats, policydomains,

externalresources, lan guages .

2.8.3.2. Get a reference

Operation: GET /api/v1/references/{resource}/{id}

2.9. Frontend integration

Each of the previously described services is offering a RESTful API. The combination of all

services is forming the functionalities of the Policy Compass platform. Thus all services are

integrated into one single-page-application frontend.

The frontend is developed with JavaScript Framework AngularJS, which is a modern library

with new approaches for templating and bidirectional data binding. It is powerful and suitable

for building single-page-applications which interact with RESTful web services. AngularJS is

able to react on actions of the user, events in the browser and changes of data in real-time. It

has strict modular structure based on the concept of dependency injection and emphasis

portability and scalability. The Policy Compass frontend harness that structure to integrate all

services into one application and still keeps high maintainability of each service. Every

respective service frontend is encapsulated into an AngularJS module. Each module is then

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 24 of 47

divided into sub-modules, responsible for specific tasks. Those are typically controllers,

services, directives and templates. A service represents the data and is responsible for

communicating with the API. This data is processed and prepared by a controller and passed

to suitable HTML-template to display it to the user. Directives are reusable frontend

functionality and are used for wrapping specific functionality (e.g. a data grid or a date

picker). Furthermore, each module is responsible for routing a URL to its matching controller.

All distinct service modules are combined and registered within one central module. This

module provides also the general structure of the application, including header, footer and

main navigation. Furthermore, it hosts the general style sheet files, which are determining the

look and feel at a central point. Finally, it provides all needed JavaScript libraries.

In order to simplify integration and development of the frontend several tools are employed.

For managing dependencies to third-party JavaScript and CSS libraries the package manager

Bower is used. Bower automatically resolves dependencies and ensures a correct installation

on all (development) machines. In addition a small webserver based on the JavaScript runtime

Node.js is applied to proxy and unify the communication with the services at a central point.

For quality assurance the test runner Karma in combination with the behaviour-driven test

language Jasmine are included into the frontend module.

3. Platform Deployment

3.1. Source Code Location and Structure

The source code is split across different repositories, which can be found in the Policy

Compass organization on GitHub:

https://github.com/policycompass

There's a central Policy Compass repository, which contains installation instructions and

helper scripts:

https://github.com/policycompass/policycompass

It contains 3 submodules: policycompass-frontend, policycompass-services and

policycompass-fcmmanager.

The repository policycompass-frontend contains the complete frontend code. The AngularJS

modules can be found below `app/modules`, the main module, ñconfig.jsò and ñindex.htmlò

files can be found in the `app` folder. The repository also contains the configuration of a

simple node.js based webserver, which serves the static assets.

The repository policycompass-services put together all backend services, which are realized

in Django. Each of these services has another submodule within the policycompass-services

repository. The rest of the repository is glue code, which puts the submodules together and

provides a common Django process.

The repository policycompass-fcmmanager contains the backend code for the FCM service.

https://github.com/policycompass
https://github.com/policycompass/policycompass

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 25 of 47

Besides the core Policy Compass repositories there's the Adhocracy source code, which will

be available for public checkout soon below the following URL:

https://github.com/liqd/adhocracy3

3.2. Deployment instructions

Policy Compass can be installed on any current Linux distribution; it has been successfully

tested in Ubuntu and Fedora 20. It might also run on OS X and FreeBSD, but this hasn't been

tested.

The default deployment makes use of the nix packaging system, which makes sure the exact

same packages are installed, no matter which base distribution is used. Furthermore, it allows

to install Policy Compass completely as a non-root user, apart from the /nix directory which

needs to be writable by the installation user.

The installation requires only a few manual steps; the rest is done automatically through

various build tools. The following describes the installation steps as-is by October 2014. The

exact steps will likely change with the further development of the platform.

1. Install nix (this requires /nix directory which is writable by the current user)

 bash <(curl https://nixos.org/nix/install)

 source ~/.nix - profile/etc/profile.d/nix.s h

2. Clone and install Policy Compass

 git clone git@github.com:policycompass/policycompass.git

 cd policycompass

 make

3. Install Adhocracy:

 make adhocracy_install

4. Configure:

 adjust policycompass - frontend/app/config.js as you like.

https://github.com/liqd/adhocracy3

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 26 of 47

5. Run policycompass:

 nix - shell - A policycompass - env - I ~/.nix - defexpr/channels/nixos -- pure --

command supervisord

3.3. License Information

All Policy Compass modules are licensed under the AGPLv3. The reasoning behind the

license choice can be read in the section 5.2 "IPR management of Policy Compass" in

deliverable D6.1 ñMarket Analysisò [2].

Adhocracy is licensed under the AGPLv3 as well.

4. Platform usage guide

Following is the list of screenshots retrieved from the application at the current state of

development. Detailed functionality has been provided within D2.1 ñPolicy Compass

Architecture Year 1ò [1], section 7 ñUser Interface Designò.

The current state of the screens is under development, thus they are not yet finalised. The

development team has mainly focused on the implementation of the functionality and not on

the user experience. Revised screens will be provided at the second year.

4.1. Policy Compass Home

Figure 1: Policy Compass Home Page

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 27 of 47

The Policy Compass home page provides the starting point for the userôs navigation within

the platform. The top and main menu will provide links to ñBrowseò, ñCreateò, ñI want toò,

ñRequestò and ñHow it worksò.

At the moment the following functionality is provided:

¶ Direct link to the ñCreateò section, as shown in in Figure 2: Policy Compass Create

Page.

¶ Direct link to the ñBrowseò section, as shown in Figure 3: Policy Compass Browse.

4.2. Policy Compass Create Page

Figure 2: Policy Compass Create Page

The Create page is still under construction, but it is currently used to provide direct links to

the tools that allow content creation within the platform. The direct links implemented are:

¶ ñMetricò: direct link to the Metrics Metadata Editor as shown in Figure 6: Metrics

Metadata Editor - Dataset Editor.

¶ ñVisualisationò: direct link to the visualisation designer as shown in Figure 12:

Visualisations Designer.

¶ ñHistorical Eventò: direct link to the Historical Events creation page as shown in

Figure 23: Historical Event Editor.

¶ ñFCMò: direct link to the FCM Editor as shown in Figure 18: FCM Editor interface

for modelling.

4.3. Policy Compass Browse

The Policy Compass Browse provides a user interface for performing search services on

Policy Compass main entities. Searching for metrics, visualizations, events or FCM models is

the main activity that a user, whether simple visitor or registered, is expected to do when

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 28 of 47

visiting the Policy Compass portal. Search is the primary operation on stored or catalogued

entities (metrics, visualizations, historical events, FCM models) and should be simple,

straightforward yet flexible by being parametric and adaptable to the user preferences.

Policy Compass browse will respect these directions, which comprised part of the user

requirements, in order to offer an efficient and easy to use search function.

The initial page of the Policy Compass Browse page (/browse) returns the complete list of all

entities from within the Policy Compass platform, as shown in the following figure:

Figure 3: Policy Compass Browse

The user can thereafter type a search keyword on the search input box and the system will

then perform a full index search on all entities of the system, as shown in the following figure:

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 29 of 47

Figure 4: Full index search on Policy Compass

The user can filter the search results based on their type (Metrics, Events, Visualisations,

FCM models) as shown in the following figure:

Figure 5: Filter results based on search item type

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 30 of 47

To fully utilize the current capabilities and flexibility of the Search service that is deployed on

the back end, the Filter section of the Policy Compass Browse page will be extended with

more search capabilities and faceted browsing in the future (based on specific fields, e.g. start

/ end of events, publisher of metric, etc.).

4.4. Visualisation and Management of Metrics

4.4.1. Metrics Manager

The frontend of the Metrics Manager provides all functionality to view, edit and create

metrics, including the metadata and the actual tabular data.

Figure 6: Metrics Metadata Editor - Dataset Editor

Figure shows the first step of the form to create a new metric. It is divided into two parts. On

the left hand are basic fields for metadata, like the title, the acronym and keywords and on the

right hand is the grid to provide the metric data. The grid can be filled manually or by pasting

data from the clipboard (e.g. from Excel) into it. Below the grid the user has to set the

meaning of each relevant column ï e.g. setting the column C as value column. Furthermore

there are additional options like adding extra columns, rotating the data, clearing the grid and

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 31 of 47

setting the date format. After providing all compulsory fields the user can move on to the

second step.

Figure 7: Metrics Metadata Editor - Metric Details

Figure shows the second step of the creation of metrics. The right column changes from the

grid view to additional metadata fields, like description and language. Finally, when all

compulsory fields are filled the metric can be saved. In addition is possible to go back to the

first step. For editing an existing metric the same forms as for the creation are used, in which

the fields are already pre-filled.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 32 of 47

Figure 8: Metrics Metadata Editor - Import via File

The first step offers an additional option to provide the metric data. Figure shows the tab to

drag & drop spreadsheet files, which are then automatically rendered and its content is used to

pre-fill the data grid. The file formats XLS, XLSX and CSV are supported.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 33 of 47

Figure 9: Metrics Detail Page

Figure illustrates the detail view of an existing metric. The base view shows all metadata and

offers further options. The user can change to the edit-view, delete the metric, create a

visualisation for it or display the metric data. Furthermore, a corresponding discussion about

the metric is embedded.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 34 of 47

Figure 10: Metrics Detail Page - Dataset View

The actual metric data is shown in a separate view, which can be displayed from the base

view of the detail page. Figure shows this view. It shows the grid in a read-only mode and

explains its meaning within a legend.

4.4.2. Visualisations Manager

The visualisations manager frontend provides a set of screens where the user can visualise

metrics created in the Policy Compass platform over a period of time, experiment with these

visualisations by interacting and changing the way they are displayed as well as annotate them

with historical events.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 35 of 47

Figure 11: Visualisations Viewer

Figure 11 shows the detail view of an existing visualisation. The visualisation generated the

graphic representation of the metrics annotated by the historical events related to the

visualisation as well as further details. The user can have certain interaction with it, especially

when hovering over specific points on the graph and viewing concrete information

The user can navigate to the visualisation designer clicking on the edit button, delete the

visualisation or/and navigate to any of the related metrics and events that are linked to the

visualisation.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 36 of 47

Figure 12: Visualisations Designer

Figure 12: Visualisations Designer is where a visualisation can be created and modified. The screen

is divided in two parts. One at the top, where the visualisation is displayed with the available

tools and the bottom part is the section where the visualisation data is configured. The bottom

part is divided in three subsections/tabs, Metrics, Historical Events and Metadata Editor:

¶ Metrics: In this tab users can add any metric on the visualisation.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 37 of 47

Figure 13: Visualisation Manager ï Add metric

When clicking on the Add metric button, the screen expands allowing the user to search and

select metrics in order to add them to the visualisation, as shown in Figure 13: Visualisations

Manager - Add metric.

Figure 14: Visualisations Designer - Configure metric

Clicking on the edit button of a metric linked to the visualisation provides the option to

change the default date column of the metric and also set a grouping column. Any metric can

be removed from the visualisation by clicking on the delete button.

FP7 - 612133 ï Policy Compass D3.1 ï Policy Compass platform ï year 1

WP3 ï Policy Compass Implementation Page 38 of 47

¶ Historical Events: The user is able to annotate visualisations with historical events.

This functionality is only available to line graph visualisations. In order to link an

event to a visualisation the user can click over the graphical representation or the ñAdd

Historical Eventò button and the corresponding window appears.

Figure 15: Visualisation Designer - Annotate graph with a historical event

The user can search can search for an event by name and/or by dates. Also, each event can be

used to annotate the visualisation with a custom colour and custom description.

