
This project has received funding from the European Union’s Seventh Framework Programme for research, technological development
and demonstration

FP7-ICT-2013-10

Policy Compass

WP3 - Policy Compass Implementation

D3.2 – Policy Compass platform – year 2

Due date: 30.06.2015 Delivery Date: 9 November 15

Authors: Rouven Brües (LIQD), Nicolas Dietrich (LIQD), Nadia Politou (ATOS), Miquel

Mila Prat (ATOS), Lena Farid, Alan Mayer, Fabian Kirstein (Fraunhofer), Spyros Mouzakitis

(NTUA), Nauman Chaudhry (UBRUN)

Dissemination level: Public Nature of the Deliverable: Prototype

Internal Reviewers: Yury Glikman (Fraunhofer) & Rebecca Morgan (CCC)

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 2 of 30

Executive Summary:

The deliverable D3.2 titled “Policy Compass platform – year 2” provides a consolidated

overview over the implementation of the second iteration of the prototype version of the

Policy Compass platform. To this end the deliverable provides a short overview over the

various services and how they are implemented on the Policy Compass platform. It concludes

with a brief overview of planned next steps for the forthcoming third iteration.

This deliverable is the output of the work package WP3 “Policy Compass Implementation”

and the second of three iterative works that document the technical implementation of the

Policy Compass platform (the others being “D3.1 Policy Compass platform – year 1” and

D3.3 Policy Compass platform – year 3”).

Main objectives of the prototype are on the one hand practical insights into the planned

concepts and on the other hand a feasibility analysis of the implementation and in particular

the service-oriented architecture approach.

Disclaimer: The information and views set out in this publication are those of the author(s)

and do not necessarily reflect the official opinion of the European Communities. Neither the

European Union institutions and bodies nor any person acting on their behalf may be held

responsible for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the Policy Compass Partners

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 3 of 30

Table of Contents

Abbreviations .. 5

Partner Name corresponding to Abbreviation in Policy Compass DoW .. 6

List of figures .. 6

1. Introduction ... 7

2. Policy Compass Platform Implementation – Year 2 ... 8

OVERVIEW / OVERALL STRUCTURE ... 8
2.1. DATASET MANAGER .. 8

2.1.1. Functionalities ... 8
2.1.2. Implementation details .. 10
2.1.3. API... 11

2.2. METRICS MANAGER ... 11
2.2.1. Functionalities ... 11
2.2.2. Implementation details .. 11
2.2.3. API... 12

2.3. EVENT MANAGER .. 12
2.3.1. Functionalities ... 12
2.3.2. Implementation details .. 13
2.3.3. API... 13

2.4. VISUALISATION MANAGER .. 14
2.4.1. Functionalities ... 14
2.4.2. Implementation details .. 15
2.4.3. API... 15

2.5. FCM MANAGER ... 15
2.5.1. Functionalities ... 15
2.5.2. Implementation details .. 15
2.5.3. API... 21

2.6. DELIBERATION SERVICE ... 22
2.6.1. Functionalities ... 22
2.6.2. Implementation details .. 22
2.6.3. API... 22

2.7. ARGUMENTATION SERVICE .. 23
2.7.1. Functionalities ... 23
2.7.2. Implementation details .. 23
2.7.3. API... 23

2.8. REFERENCE POOL ... 24
2.8.1. Functionalities ... 24
2.8.2. Implementation details .. 25
2.8.3. API... 25

2.9. SEARCH SERVICE ... 25
2.9.1. Functionalities ... 25
2.9.2. Implementation details .. 26
2.9.3. API... 26

2.10. AUTHENTICATION SERVICE .. 26
2.10.1. Functionalities ... 26
2.10.2. Implementation details .. 26
2.10.3. API ... 27

2.11. FRONTEND INTEGRATION ... 27

3. Platform Deployment .. 28

3.1. SOURCE CODE LOCATION AND STRUCTURE ... 28
3.2. DEPLOYMENT INSTRUCTIONS ... 28

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 4 of 30

3.3. LICENSE INFORMATION .. 29

4. Conclusion .. 29

5. References ... 30

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 5 of 30

Abbreviations

API Application Program Interface

CO Confidential, only for members of the Consortium (including the Commission

Services)

CSS Cascading Style Sheet

CSV Comma Separated Value

D Deliverable

DRF Django REST Framework

DOM Document Object Model

DoW Description of Work

FCM Fuzzy Cognitive Maps

FP7 Seventh Framework Programme

GUI Graphical user Interface

JSON JavaScript Object Notation

SOA Service Oriented Architecture

HTTP Hypertext Transfer Protocol

IPR Intellectual Property Rights

MS Milestone

OS Open Source

ORM Object Relational Mapping

REST Representational State Transfer

URL Uniform Resource Locator

WP Work Package

XLS Microsoft Excel spreadsheet

ZODB Zope Object Database

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 6 of 30

Partner Name corresponding to Abbreviation in Policy Compass DoW

Fraunhofer Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

UBRUN Brunel University

ATOS ATOS Spain SA

LIQD Liquid Democracy e.V.

NTUA National Technical University of Athens

ITMO Saint Petersburg National Research University of Information Technologies

 Mechanics and Optics

CCC Cambridgeshire County Council

List of figures

Figure 1. Create dataset view .. 10

Figure 2. Search for events by keyword and time frame ... 12

Figure 3. Select an event to import from the search results .. 13

Figure 4. Event metadata gets imported into the event creation form ... 13

Figure 5. Causal model editor ... 16

Figure 6. “Add Concept” dialogue .. 17

Figure 7. “Create Association” dialogue ... 17

Figure 8. Configuration of Concepts in “Simulation” tab ... 18

Figure 9. “Edit Metric” dialogue ... 19

Figure 10. Configuration of relationships in for simulation .. 19

Figure 11. Simulation Result Tab ... 20

Figure 12. Simulation Result Graph .. 20

Figure 13. Window for Impact Analysis ... 21

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 7 of 30

1. Introduction

The present deliverable D3.2 “Policy Compass platform – year 2” aims at documenting the

implementation of the various Policy Compass components/services in the second iteration of

the prototype version of the Policy Compass platform year 2. The overall objective of WP3 is

to implement the Policy Compass platform according the specifications provided in WP2 and

integrate it in the selected eParticipation tool and social networks.

This deliverable, “D3.2 Policy Compass platform – Year 2” is the second of three iterations

for this work package. It has been prepared as part of the project’s agile management process

and is dedicated to implement the Policy Compass platform in all its aspects to fulfil the

minimum functional and technical requirements needed for the implementation of the user

stories that have been selected to enter the sprints for year 2 of the Policy Compass project.

The document is structured into two main parts. After outlining the functionalities,

implementation details and APIs of all services that are implemented on the Policy Compass

platform (section 2), the document briefly outlines the general platform deployment (section

3).

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 8 of 30

2. Policy Compass Platform Implementation – Year 2

Overview / Overall structure

Policy Compass is built as a 3-tier service-oriented architecture (SOA), consisting of three

layers - the application layer, the core services layer and the data storage layer, as described in

further detail in deliverable “D2.1 Policy Compass Architecture – year 1” [1], section 8 and

“D2.2 Policy Compass Architecture – year 2” [2].

The application layer is implemented as an AngularJS application. It contains the user

interface for the metric manager, the visualisation manager, the historic event manager, the

FCM editor and the search service. Furthermore, it contains glue code, which allows

embedding of the deliberation service and the authentication service frontends, which in turn

talk to the respective backend service components. All application layer modules

communicate solely with the REST APIs of the backend components.

The core services layer contains the business logic of the various services. Each service

represents a closed set of information and functionality. All services expose their functionality

through a RESTful API. Metrics manager, visualisation manager, historic event manager,

search manager and reference data pool are implemented as Django apps making use of the

Django REST Framework. The FCM manager is written in Java, providing a Java API for

RESTful Web Services (JAX-RS). The deliberation service, Adhocracy, is implemented in

Python as a Pyramid application. Adhocracy also acts as the authentication backend service.

In year two, the new version of the argumentation service Carneades will join the service too,

a formal argumentation mapping tool is written in GO.

The data storage layer is mostly realized with the PostgreSQL database, which the Django

based services, as well as the FCM backend, uses to store their data. The deliberation service

uses the ZODB as its data store.

2.1. Dataset Manager

2.1.1. Functionalities

In the second iteration a new component, the Dataset Manager is introduced. The purpose of

this component is the management of datasets, which are the foundation of Policy Compass.

On one hand they are the input for other components, like visualisations and metrics. On the

other hand they can be an output to, e.g. the Metrics Manager will generate datasets (see 2.2

Metrics Manager). In the first iteration the Metrics Manager was responsible for those

functionalities. As the concept of metrics evolves with the reworked methodology of the

second iteration, datasets become a distinct concept. However the core concept of the Dataset

Manager corresponds with those of the former Metrics Manager (see Deliverable D3.1). It

allows for the creation, updating, listing and deletion of datasets, which consist of metadata

and tabular data. In addition the scope of the metadata was revised and the structure of the

tabular data was completely resigned and simplified, in order to meet the requirements of the

second iteration. As with every component of Policy Compass it is composed of a backend

with a RESTful API and an AngularJS frontend. Corresponding to the new namespaces of the

Reference Pool (see 2.8 Reference Pool) the metadata is extended with new fields to allow a

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 9 of 30

finer classification of the data and, if necessary, to specify the origin of the dataset. The most

significant change is the new structure of the data itself. The first version offered a very

flexible tabular structure, with an arbitrary amount of extra columns. The new structure is

more limited and restrictive, but therefore enforces a specific quality of the data. The table is

now strictly time-based, where the time is now represented within one column and an

additional metadata field, which indicates the timely resolution, which can be taken from a

fixed namespace, e.g. year or month. Depending on this value the time column respectively

can be set to a year or a month. Each time value corresponds to a value, which can be set for

multiple instances of one class (see 2.8 Reference Pool), which is linked to the dataset. E.g a

value for a specific time can be given for several countries, where the dataset is associated

with the class “country”. This leads to simple 2-dimensional table, which can be easily read

and processed. The following shows a simple example of a valid table. It shows data to

concrete individuals (Germany, Spain) of the class country in the years 2002 until 2004.

 2002 2003

Germany 300 400

Spain 500 600

Furthermore the Dataset Manager backend offers extensive functions to transform and arrange

the tabular data to specific needs. This is especially helpful for processing the data in

subsequent components. Firstly, this includes the filtering of the table by time, value or

individual. Secondly, a conversion of time and unit is possible. The time can be scaled from a

high resolution to a lower one. e.g. from monthly values to yearly values. This allows the

combination of multiple datasets if needed. A unit can be converted into another one if both

describe the physical quantity, e.g. from kilometres to miles.

A basic issue of the first iteration was the creation of datasets, which was not intuitive and too

complicated. Therefore an entire new user interface will be developed, interacting with the

new features of the backend. The main objective is to guide the user through a step-by-step

process, which allows the transformation from source data (e.g. an Excel file) into the data

and metadata structure of the Dataset Manager. During the steps the user will specify the

metadata to classify the datasets as accurate as possible. For uploading the tabular data itself

the user will be guided to transform the source data into the Policy Compass data structure.

The source can be uploaded in suitable formats (common spread sheet formats), pasted or

directly entered. Based on this data the user will visually select the required information from

the table to fill the target table. For example the user will be obliged to specify the time

resolution, the concrete time range and the individuals for the specified class. Finally the

values themselves will be added to the table. The overall process is well described within the

user interface and leads to a valid dataset.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 10 of 30

Figure 1. Create dataset view

2.1.2. Implementation details

The basic implementation of the Dataset Manager is derived from the first version of the

Metrics Manager. The backend is part of the Django services application, where it is

implemented as a dedicated application. For the basic functions of this RESTful web service

the standard stack of Django Rest Framework and PostgreSQL is used. For the processing of

the tabular data the Python library Pandas is applied. It allows a high-performance

manipulation of the table, like filtering and sorting. Furthermore it supports time-based data

and is therefore suitable for the time-scaling of the values. For processing the units,

e.g. converting, the Python library Pint is used. It handles complex unit conversions and

validations of mathematical operations with units.

The frontend of the Dataset Manager is implemented as a module of the Policy Compass

AngularJS-Frontend. It uses the popular JavaScript library Handsontable to offer an Excel-

like grid and basic spreadsheet operations. The step-by-step wizard is implemented with core

modules of AngularJS. One critical aspect is that the entire process of providing a dataset may

takes some time. Therefore it is necessary to store the state of each step in case the user

refreshes the entire Single-Page-Application. This is done by using the Local Storage of the

browser.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 11 of 30

2.1.3. API

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Dataset-Manager-API

2.2. Metrics Manager

2.2.1. Functionalities

The Metrics Manager represents the heart of the Policy Compass methodology as it allows the

creation, operationalisation and management of metrics. Metrics measure properties and can

be operationalised by applying datasets to a given metric. The process behind creating a

metric is threefold:

1. Building a mathematical formula that includes properties (see Section 6.2.3) or other

previously defined formulas as variables, arithmetic operations and optionally arbitrary

function, such as normalisation or internal dataset computations.

2. Validating the consistency of the formula. Here the properties’ units have to be tested for

compatibility as well as whether a normalisation of the data is required.

3. Operationalising the metric by applying and computing selected datasets to the metric in

question. The operationalisation of a metric, leads to the computation and creation of a

new dataset for the selected criteria: individual, time, and class.

2.2.2. Implementation details

The metrics manager is one of the policycompass services implemented in django, the

backend code lives in the policycompass - services repository.

The frontend is implemented as an AngularJS module, as all the others.

The functionality provided by this service is separated in the following distinct sub-

components of the Metrics Manager:

1. Formula Builder

2. Metrics Validator

3. Metrics Operationaliser

It is important to note that the Metrics Validator can be utilised during the different steps

aligned above. A first validation, the property validation, can be achieved directly after

building the formula to ensure that the units of the selected properties are compatible. A

second validation is done once datasets are selected to operationalise the metric. The second

https://github.com/policycompass/policycompass/wiki/Dataset-Manager-API

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 12 of 30

validation concerns the compatibility of the data to be computed and whether, for instance, a

normalisation is required.

2.2.3. API

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Metrics-Manager-API

2.3. Event Manager

2.3.1. Functionalities

The basic functionality of the Historic Events Manager for creating and browsing through

events has been extended by allowing a search and import of selected events by the user from

external data sources. A search form for the user is provided to let the user search by

keywords and within a time frame for historical events. From the results of the search an

event can be chosen to be imported.

After choosing an event all the metadata related to the event is imported to the events creation

form such as title, description, keywords, dates etc. The user can then save the event in the

Policy Compass platform.

Figure 2. Search for events by keyword and time frame

https://github.com/policycompass/policycompass/wiki/Metrics-Manager-API

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 13 of 30

Figure 3. Select an event to import from the search results

Figure 4. Event metadata gets imported into the event creation form

2.3.2. Implementation details

The first implementation of the events search service is collecting the historical data from the

DBpedia project. To collect the data SPARQL-Requests are being sent from the Python

backend to a DBpedia SPAQRL Endpoint.

The retrieved data is then transformed into an internal uniform data model and published via

an API for the AngularJS Frontend of the application.

This functionality is being further developed to enable the support of other services providing

data which are relevant to Policy Compass events.

2.3.3. API

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Events-Manager

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 14 of 30

2.4. Visualisation Manager

2.4.1. Functionalities

Due to the introduction of the Dataset Manager during the second iteration, the retrieval of

data for the Visualisation Manager has been moved from the use of metrics (used to plot

charts in the first version of the platform) to the use of datasets. Therefore, a visualisation in

the Policy Compass platform now basically consists of the graphical representation of one or

more datasets, which can be annotated by one or more historical events.

The visualisation manager service provides an API to create, update, list and delete

visualisations. A visualisation within Policy Compass can be configured with the following

parameters:

¶ Type of graph: A visualisation can be displayed in four different formats; as a line

chart, a pie chart or as a bar chart and as a map.

¶ Graph configuration options: Depending on the type of graph used to plot the data, the

following configuration options are available; “Show Legend”, “Show Lines”, “Show

Points”, “Show Labels”, “Show Grid”, “Show only one Y axe”, “Show as %“ and

“Resolution”

¶ Datasets: In order to generate a visualisation at least one dataset needs to be selected.

The visualisation designer provides certain flexibility on the configuration of the

dataset on a graph, as listed below:

o Individual: Each dataset may contain information of multiple individuals. It

can be possible to select which individuals of the dataset are going to be

plotted in the chart.

o Colour: By default the Visualisation Manager assigns a colour per individual

but users can select a different colour per each individual.

¶ Events: A line chart visualisation can be annotated with any historical event that has

been stored into the application. When annotating, one can add a description of this

historical event (by default this description is fulfilled by the description of the event

but it can be modified by the user) and to choose the background colour that will be

used to annotate the event in the chart. In the first version of the Visualisation

Manager this data could not be updated, but in the second one users can change the

description and the colour of the related events any time. Also, a recommendation

engine has been implemented to provide a list of possible events that can be related

with the visualisation.

¶ Metadata: This is the basic data of the visualisation; title, description, keywords and

language.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 15 of 30

2.4.2. Implementation details

The visualisation service is implemented with the exact same technology, architecture and

characteristics as the dataset manager, detailed in 2.1.2.

The frontend of the Visualisation Manager is implemented as a module of the Policy Compass

AngularJS-Frontend project and consumes the web service. It is based on the built-in modules

of AngularJS to communicate with a RESTful API. The D3.js library is used to generate the

graphical representation of the visualisations of line, pie and bars charts. For the

representation of datasets in maps charts, the Leaflet library has been selected as a base for the

deployment.

2.4.3. API

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Visualisation-Manager-API

2.5. FCM Manager

2.5.1. Functionalities

FCM manager plays a critical role to evaluate the policy impact in the Policy Compass

project. This module provides users with a function to model their causal model, i.e. Fuzzy

Cognitive Map and to evaluate the model based on the simulation results. From users’

perspective the functionalities provided by this module can be divided into modelling stage

and simulation stage. This module can provide a significant link between open data and its

strategic value as an evidence for a policy development.

In the modelling stage, for policy impact simulation, the user can model their own policy

causal model in a type of Fuzzy Cognitive Map using canvas interface. The user can create

the concepts and their relationships by adding boxes and arrows in the canvas.

In simulation stage, the user can evaluate the policy model by making links between concepts

in the model and open data. Java library JFCM enables the module to run the FCM simulation

by calculating the future concept value and the result of Impact analysis can show more

details of the dynamics of policy models; the way concepts interact with each other and what

will happen due to the change of a specific concept.

FCM manager provides a user-friendly interface that enables the integration of the whole

process of policy modelling and simulation. Based on real open data, the user can build causal

models representing the relationships between policy variables and simulate the causal model

using FCM approach. The implementation details of FCM managers are presented in next

section.

2.5.2. Implementation details

This service is implemented as a RESTful web service in Java with the JAX-RS reference

implementation Jersey framework. Java defines REST support via the Java Specification

Request (JSR) 311. This specification is called JAX-RS (The Java API for RESTful Web

Services). JAX-RS uses annotations to define the REST relevance of Java classes. Jersey is

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 16 of 30

the reference implementation for the JSR 311 specification. The Jersey implementation

provides a library to implement RESTful web services in a Java servlet container. To store the

data it uses the project-wide standard database system PostgreSQL. The object-relational

mapper (ORM) of Hibernate communicates with the database in order to get and write data.

This data is serialized and de-serialized from/to JSON and mapped to a respective URL and

HTTP-method. The causal model can be simulated using JFCM library, which is

representative FCM open library.

The frontend of the FCM is implemented as a module of the Policy Compass AngularJS-

Frontend project and consumes the web service. It is based on the built-in modules of

AngularJS to communicate with a RESTful API. Cytoscape.js, which is an open-source graph

theory library written in JavaScript, is used for the FCM Editor Interface. The result of causal

model simulation will be represented both by table type and graph type. Graphical

representation of simulation results is implemented using directive provided by visualisation

modules.

To make the most efficient use of FCM as a policy impact modelling tool, FCM modules

implement the modelling stage and the simulation stage separately. In the modelling stage, the

user can create the FCM model with relevant concepts and their causal relationships. Based

on the created model, the user can run the FCM simulation and get the simulation result in

simulation stage. The simulation result includes the change in value of each concept with

regards to the number of iterations.

In the modelling stage, the user can organize the FCM model using the causal model editor

(canvas interface) in the platform (see figure 5 below).

Figure 5. Causal model editor

By clicking the “Add Concept” button, the user can add a concept for FCM model using the

window depicted below.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 17 of 30

Figure 6. “Add Concept” dialogue

After adding all the concept, the user can create the associations between defined concepts by

defining source and destination concept.

Figure 7. “Create Association” dialogue

The user only has to determine the source and destination concept so that FCM can have the

direction of the causal relationships. (The strength of association (i.e. weight between

concepts) will be determined in the simulation phase and the user will have two option for

weight determinant; user-defined weight and automatic calculation based on the historical

data of two concepts.) Based on the causal model, user can run simulation with setting the

simulation preferences. The user can save the FCM model using the “Save model” and “Save

As” button. Saving action includes not only model itself, but also the parameter setting such

as concept value and weights.

After saving the FCM model, the user can run simulation by click the “Run Simulation” tab

on the lower part of window below.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 18 of 30

Figure 8. Configuration of Concepts in “Simulation” tab

To run simulation, the values should be assigned according to the fuzzification scheme. The

user can set the value using the combo box. In advanced setting, the user can choose the

appropriate activator function for simulation. In the Policy Compass platform, eight activation

functions are provided. Most of the activation functions used for FCM simulation are adopted

from the artificial neural network research. The details of activation functions provided by our

platform are presented in Section 2.1 of D2.2.

In the Policy Compass platform, every scale has its own pre-defined fuzzification scheme so

that linguistic measures can be automatically mapped to fuzzy values. Users need to

determine the scale of the model. Based on the scale, each concept value will be mapped to

fuzzified numerical values, most frequently to the range from 0 to 1. According to the scale

chosen by user, the linguistic measure can be transformed to fuzzified real number between 0

and 1. For example, when user select 5 scale for the concept, the fuzzy scheme can be

expressed below

- Very weak/ Very low -> 0.2

- Weak/ Low -> 0.4

- Medium -> 0.6

- Strong/ High -> 0.8

- Very strong/ Very high -> 1.0

Concepts in the FCM model may have a correspondence to the metric which is pre-defined

through the Metric Manager. The user can search the relevant metric to make a

correspondence between concept and metric by pushing the button on “Add Metric” button

for each concepts.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 19 of 30

Figure 9. “Edit Metric” dialogue

Using the search interface in the Edit Metric window, one of the results can be selected for the

correspondence between concept and metric. If the user cannot find the suitable metric

relevant to concept, the simulation will run based on the user-inserted data for this concept.

The next step toward running the simulation is to complete the relationship table in lower side

of FCM simulation manager window (see the figure below).

Figure 10. Configuration of relationships in for simulation

Fundamentally, users can set the weight value based on their domain knowledge. The module

also provides a correlation matrix that can hint at the weight value and automatic calculation

option will be implemented as well. The automatic option will calculate the weight value

based on the historical data of each concepts using learning approach.

If the user clicks on the button “Correlation Matrix between Concpets,” the correlation matrix

window above will pop up. The correlation between concepts can also be used for weights by

selecting the “Use the Correlations for Weights” button. The user should keep in mind that

only concepts which correspondence to the metrics with historical data will be presented in

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 20 of 30

the correlation matrix. If the user wants to calculate the weight based on the analysis of

historical data automatically, they can click the “Weight Calculation using the Historical

Data.”

Finally, after finishing the simulation process in Policy Compass platform, the user can see

the simulation result tab (see the figure below).

Figure 11. Simulation Result Tab

In this window, the user can see the change of each concept value (state vector) through both

table and graph. Values for all concepts are updated based on the calculation based on the

predefined equation until values reach the idle state. The graph that is implanted using

Visualisation module directive can be found in ‘Graph’ tab.

Figure 12. Simulation Result Graph

In addition to the simulation, the Policy Compass platform also provides an impact analysis

function. This analysis enables the user to see the change of simulation result with regards to

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 21 of 30

the change of initial value of selected concepts. If the user clicks the button “Impact Analysis”

in simulation result window, the windows below pops up:

Figure 13. Window for Impact Analysis

As we can see the window above, there are two option for impact analysis. The first option is

for investigating the impact of a single concept for other concepts. Using the combo box, the

user can choose the concepts for which they want to see the impact.

2.5.3. API

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Fuzzy-Cognitive-Map-%28FCM%29-

Manager

https://github.com/policycompass/policycompass/wiki/Fuzzy-Cognitive-Map-%28FCM%29-Manager
https://github.com/policycompass/policycompass/wiki/Fuzzy-Cognitive-Map-%28FCM%29-Manager

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 22 of 30

2.6. Deliberation Service

2.6.1. Functionalities

The deliberation module allows users to deliberate about performance metrics, the user

created visualisations and policy models in informal discussions. The users can rate other

users' comments.

This is realized with Adhocracy. The software Adhocracy has designed as a cooperative tool

for text editing, discourse, delegation and voting, allows decision making with a high number

of participants. It has successfully employed different formats of e-participation, which vary

from agenda setting to consultation, collaboration and decision-making.

2.6.2. Implementation details

Coherent with the service-oriented architecture, Adhocracy has deployed external components

besides the other Policy Compass components. It is loosely coupled: integration between

Policy Compass and Adhocracy happens purely within the frontend.

Adhocracy is built as a client-server architecture consisting of a backend and a frontend part.

The Adhocracy backend is implemented in Python and based on the Pyramid framework.

Data is stored in a Zope Object Database (ZODB) instance. The Adhocracy backend allows to

model new content types and participation process workflows and exposes a REST API for

these. This is used by the Adhocracy frontend.

The Adhocracy frontend is implemented in Typescript, a superset of JavaScript, which adds

static typing and thus security to JavaScript. The Adhocracy frontend makes heavy use of the

AngularJS JavaScript framework.

The Adhocracy frontend can be embedded in other applications through the AdhocracySDK.

The adhocracyEmbedder AngularJS module provides easy access to the AdhocracySDK

within Policy Compass. This is used by the deliberation module as well as the authentication

module.

2.6.3. API

The deliberation AngularJS module provides a directive, which allows displaying a discussion

thread related to a given object ID. If the discussion thread does not yet exist, it will be

generated on the fly.

Example:

<show- discussion data - key="metric_{{ metric.id }}"></show -

discussion>

When used within a HTML template used for metric with ID 5 (exemplarily), this will insert

the discussion thread with the ID `metric_5` into the HTML DOM. If it doesn't exist yet, it

will be created.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 23 of 30

During year 2, another embeddable widget - the request-service - will be implemented.

2.7. Argumentation Service

2.7.1. Functionalities

The argumentation service provides a graphical user interface that enables a user to model an

arbitrary argumentation graph. Such an argumentation graph can reference arguments or facts

that were contributed on the Adhocracy platform by other users.

A user can then use the service to compute the resulting labels argument weights in an

argumentation graph and save them together with the graph itself. As with other Policy

Compass resources, argumentation graphs can be edited by and shared with other users.

This functionality is based upon a new version of the Carneades argumentation software

(carneades 4.x). This new version of Carneades was partly developed in the Policy Compass

project to meet its specific requirements:

- being able to handle cyclic arguments, since Policy Compass Users may make cyclic

arguments in their discussions about metrics and other issues.

- being able to handle arguments about alternative options to practical problems, such as

choosing a metric to apply, by using methods from multiple criteria decision analysis

(MCDA) to aggregate the pro and con arguments of the options

- an improved Carneades server software in terms of efficiency, maintainability and

extensibility to facilitate exploitation and sustainability of Policy Compass results.

2.7.2. Implementation details

Aside from storage functionality, where the service aims to reuse existing persistence

mechanisms employed by the platform, the argumentation service will be implemented as a

purely client-side feature.

The argumentation graph processing functionality is provided by the current, fourth iteration

of the Carneades argumentation software. Carneades-4 is written in Go but can be compiled

to JavaScript and used directly from within the browser.

The argumentation graph editor, which is built on top of the new Carneades version

developed for Policy Compass, is implemented using existing open source technologies. It

mainly reuses components developed by the open-source noflo(http://noflojs.org) and

flowhub(http://flowhub.io) platforms: the noflo flow-based programming library and the “the

graph” graph viewer and editor. These libraries rely on other, well-proven software stacks

such as WebComponents, React.js and SVG.

Internally, Carneades is exposed as a “noflo runtime” to the noflo library. The runtime

serialises the noflo graph to Carneades’ YAML-based argumentation graph format and passes

this to Carneades for evaluation.

2.7.3. API

In development. We will expose a simple JavaScript API for integrating the user interface in

an arbitrary location on the frontend. The service requires simple backend storage

functionality which can hopefully be exposed through one of the existing data managers.

http://noflojs.org/
http://flowhub.io/

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 24 of 30

2.8. Reference Pool

2.8.1. Functionalities

The Reference Pool is a meta service, providing central namespaces, which allow a

harmonized classification of all data, which is then published on Policy Compass. Each

component can and is supposed to reference to the data of the Reference Pool within its

metadata or data. This approach avoids redundancies and makes it possible to group and

search similar content across the components. Especially the Search Services benefits from

this feature. In the second iteration the Reference Pool is extended with additional

namespaces. Furthermore the existing ones are improved and offer an extended set of

predefined values. In general the Reference Pool is read-only and its content is maintained by

the Policy Compass Administrators. One exception is the pool of keywords, which is

extended implicitly when users add new keywords to the platform. The following table shows

the available resources:

¶ Languages: Provides a comprehensive list of languages, which can be used to indicate

the language of any content of Policy Compass. More than 180 language are available,

provided by official repositories of the Open Knowledge Foundation

(http://data.okfn.org/data/core/language-codes#resource-language-codes). An ISO

3166-1 alpha-2 code is provided for every language.

¶ Policy Domains: Offers a list of relevant domains, which can be used to classify

entities by their content and relevance for a specific field. 13 different Policy Domains

are available.

¶ External Resources: Open Data is the foundation of Policy Compass. Most data

applied will origin from common Open Data portals. This resource offers a detailed

list of well-known Open Data sources, which can be linked to a dataset in order to

indicate its origin. More than 70 sources are available and originate from the Open

Data Monitor (http://www.opendatamonitor.eu).

¶ Date Formats: Depending on the location of a user the provision of a date is based on

a specific format. This resource offers a list of typical date formats and a respective

representation.

¶ Units: Units are a fundamental part of datasets and their processing. This resource

offers a list of widely used units. The unit processing in coupled with the Python

library Pint (http://pint.readthedocs.org/en/0.6/). Therefore the unit list is linked by its

identifiers with the internal representations of the Pint library. If a unit is selected for

any data, the backend can calculate with it without any indirections. 25 units are

available.

¶ Unit Categories: The possibility to calculate with values in different units is highly

dependent on the respective physical quantity they represent. Therefore each a list of

such quantities is provided, called unit categories. Each unit is linked to such a

category, allowing a fast determination of compatibility. As the unit resource it is

coupled with the Pint library.

http://data.okfn.org/data/core/language-codes#resource-language-codes
http://www.opendatamonitor.eu/
http://pint.readthedocs.org/en/0.6/

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 25 of 30

¶ Classes: A new concept in the second iteration are classes. The objective is to classify

data in more precise manner, especially datasets and metrics. Often data is just valid

within a specific range, e.g. data for female persons in Greece younger than 20 years.

A class is the abstraction of such a range, e.g. gender, country and age group. A

predefined list of such classes is available. The most significant are geographic

classes, as many data has geographic context.

¶ Individuals: A specific class may be associated with concrete and valid instances,

called individuals. This resource offers a list of such individuals. Most notable a list

with more 240 countries.

¶ Keywords: In the first iteration keywords, where just implemented as commas-

separated list, which a user could provide in each component to describe the content.

This led to a lot of redundancy and the keywords where not applicable in the facet

search. Therefore a new reference resource is introduced. It stores each provided

keyword. If a new keyword is provided, it is possible to check against the list.|

2.8.2. Implementation details

The Reference Pool backend is implemented as a Django application, using the Django Rest

Framework. The administration is done with the help of the generic Django administration

backend. For harvesting and importing existing namespaces (e.g. from the Open Knowledge

Foundation), small harvesting script were written. In the frontend small and reusable

AngularJS modules (directives) are used to include the Reference Pool data.

2.8.3. API

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Reference-Pool-API

2.9. Search Service

2.9.1. Functionalities

The Policy Compass Search service is a search server based on Elasticsearch. It provides a

distributed, multitenant-capable full-text search engine with a RESTful web interface and

schema-free JSON documents. The Policy Compass Search service was designed with

modularity in mind thus enabling searching interoperability over different types of entities

(Events, Metrics, Visualisations, FCM models) that are exposed through different API

technologies and data formats and that could potentially reside on different servers.

More specifically the Search service provides:

¶ Rebuild Index functionality of entities to the Policy Compass search server. Rebuild

index is used to bulk insert a huge amount of un-indexed documents to the Policy

Compass search server.

https://github.com/policycompass/policycompass/wiki/Reference-Pool-API

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 26 of 30

¶ Real-time indexing and deletion of individual documents from the Policy Compass

Search server. Specifically when any other type of Service (e.g. Metrics Service)

creates a new entity, a real-time signal is sent to the Policy Compass search server to

index this entity.

¶ A Search Service client to be consumed by front-end technologies. The search service

client provides access to the entire Elasticsearch REST API, including a full search

Query language based on JSON. Queries can have filters associated with them as well

as grouping and clustering capabilities

2.9.2. Implementation details

The Search Service has been created as a set of RESTful APIs under the Django REST

Framework. These API handle communication with a dedicated Policy Compass Index that is

deployed on an Elasticsearch engine. Moreover, in addition to the web APIs, access to the

Search Services is also provided through Django run time commands. The Search Service

client has been wrapped as a Service function in AngularJS framework.

2.9.3. API

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Search-Manager-API

2.10. Authentication Service

2.10.1. Functionalities

The authentication service allows users to register and login to Policy Compass accounts.

These accounts can be used by all other services to identify users. It also provides unified

session management for to the other services.

2.10.2. Implementation details

The authentication service is provided by Adhocracy.

User accounts in Adhocracy contain user names, which can be real names or pseudonyms, an

email address and a password. The email address needs to be verified by means of clicking on

a verification link sent to the given email address. The password is stored as a salted hash

using the bcrypt algorithm.

The Policy Compass authentication service contains an AngularJS frontend module, which

provides integration with Adhocracy through the adhocracyEmbedder module and adds an

angular service which tracks the currently logged user name and role. Also, it provides a

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 27 of 30

simple user indicator directive displaying whether a user is currently logged in and, if so, its

username.

2.10.3. API

In order to login or register, the Policy Compass frontend needs to embed Adhocracy. This is

hidden behind dedicated dedicated login, registration and user indicator directives.

Once a user is logged in, Adhocracy passes user data to the Authentication service, which

exposes it through its state attribute. It also sets two default HTTP header fields in the

AngularJS $http service: “X-User-Path” and “X-User-Token”.

A detailed description of the API can be found here:

https://github.com/policycompass/policycompass/wiki/Auth-Service

2.11. Frontend integration

Each of the previously described services is offering a RESTful API. The combination of all

services is forming the functionalities of the Policy Compass platform. Thus all services are

integrated into one single-page-application frontend.

The frontend is developed with JavaScript Framework AngularJS, which is a modern library

with new approaches for templating and bidirectional data binding. It is powerful and suitable

for building single-page-applications which interact with RESTful web services. AngularJS is

able to react on actions of the user, events in the browser and changes of data in real-time. It

has strict modular structure based on the concept of dependency injection and emphasis

portability and scalability. The Policy Compass frontend harness that structure to integrate all

services into one application and still keeps high maintainability of each service. Every

respective service frontend is encapsulated into an AngularJS module. Each module is then

divided into sub-modules, responsible for specific tasks. Those are typically controllers,

services, directives and templates. A service represents the data and is responsible for

communicating with the API. This data is processed and prepared by a controller and passed

to suitable HTML-template to display it to the user. Directives are reusable frontend

functionality and are used for wrapping specific functionality (e.g. a data grid or a date

picker). Furthermore, each module is responsible for routing a URL to its matching controller.

All distinct service modules are combined and registered within one central module. This

module provides also the general structure of the application, including header, footer and

main navigation. Furthermore, it hosts the general style sheet files, which are determining the

look and feel at a central point. Finally, it provides all needed JavaScript libraries.

In order to simplify integration and development of the frontend several tools are employed.

For managing dependencies to third-party JavaScript and CSS libraries the package manager

Bower is used. Bower automatically resolves dependencies and ensures a correct installation

on all (development) machines. In addition a small webserver based on the JavaScript runtime

Node.js is applied to proxy and unify the communication with the services at a central point.

For quality assurance the test runner Karma in combination with the behaviour-driven test

language Jasmine are included into the frontend module.

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 28 of 30

3. Platform Deployment

3.1. Source Code Location and Structure

The source code is split across different repositories, which can be found in the Policy

Compass organization on GitHub:

https://github.com/policycompass

There’s a central Policy Compass repository, which contains installation instructions and a

comprehensive makefile:

https://github.com/policycompass/policycompass

It has 3 submodules: policycompass-frontend, policycompass-services and policycompass-

fcmmanager.

The repository policycompass-frontend contains the complete frontend code. The AngularJS

modules can be found below app/modules , the main module, “config.js” and “index.html”

files can be found in the app folder. The repository also contains the configuration of a simple

node.js based webserver, which serves the static assets.

The repository policycompass-services put together all backend services, which are realized

in Django. Each of these services has another submodule within the policycompass-services

repository. The rest of the repository is glue code, which puts the submodules together and

provides a common Django process.

The repository policycompass-fcmmanager contains the backend code for the FCM service.

Besides the core Policy Compass repositories there’s the Adhocracy source code:

https://github.com/liqd/adhocracy3

3.2. Deployment instructions

Policy Compass can be installed on any current Linux distribution; it has been successfully

tested in current versions of Ubuntu and Fedora. It might also run on OS X and FreeBSD, but

this hasn’t been tested.

The installation requires only a few steps. The following describes the installation steps as-is

at this document preparation time. The exact steps will likely change with the further

development of the platform.

1. Clone and install Policy Compass:

 git clone git@github.com:policycompass/policycompass.git cd policycompass

2. Install dependencies:

On Ubuntu systems, you can use sudo make install_deps, which installs system package

requirements through apt.

https://github.com/policycompass
https://github.com/policycompass/policycompass
https://github.com/liqd/adhocracy3

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 29 of 30

On other systems, you need to install the dependencies manually.

1. Install Policy Compass:

 make

2. Install Adhocracy:

 make adhocracy_install

3. Configure:

 adjust the config files below etc (e.g. etc/nginx/stage/nginx.conf) as you like.

4. Run policycompass:

 supervisord -c etc/supervisord.conf

5. Start Adhocracy:

 supervisorctl start adhocracy:

3.3. License Information

All Policy Compass modules are licensed under the AGPLv3. The reasoning behind the

license choice can be read in the section 5.2 "IPR management of Policy Compass" in

deliverable D6.1 “Market Analysis” [3].

Adhocracy is licensed under the AGPLv3 as well.

4. Conclusion

The purpose of this deliverable is to explain and accompany the implementation of the

various Policy Compass components/services in the second prototype version of the Policy

Compass platform year 2.

The various functionalities of the Policy Compass services have been described in section 2 of

this deliverable. The Policy Compass source code is split across different repositories, which

can be found in the Policy Compass organization on GitHub:

 https://github.com/policycompass

All Policy Compass modules are licensed under the AGPLv3.

https://github.com/policycompass

FP7 - 612133 – Policy Compass D3.2 – Policy Compass platform – year 2

WP3 – Policy Compass Implementation Page 30 of 30

5. References

[1] Lena Farid, Yury Glikman, Fabian Kirstein, Alan Meyer, Amine Mastouri, Dominic

Gorny, Sotiris Koussouris, Spiros Mouzakitis, Christos Mpotsikas, Kostas Koutras,

Habin Lee, Obaid Abdulfatah, Nicolas Dietrich, Rouven Brües, Rebecca Morgan,

Dmitrii Trutnev, Nadia Politou, and Miquel Mila Prat, “D2.1 – Policy Compass

Architecture – Year 1.” EU project “Policy Compass,” 2014.

[2] Lena Farid, Yury Glikman, Fabian Kirstein, Alan Meyer, Amine Mastouri, Dominic

Gorny, Sotiris Koussouris, Spiros Mouzakitis, Christos Mpotsikas, Kostas Koutras,

Habin Lee, Obaid Abdulfatah, Nicolas Dietrich, Rouven Brües, Rebecca Morgan,

Dmitrii Trutnev, Nadia Politou, and Miquel Mila Prat, “D2.2 – Policy Compass

Architecture – Year 2.” EU project “Policy Compass,” 2015.

[3] Martin Löhe, Yury Glikman, Thomas Gordon, Sotiris Koussouris, Spiros Mouzakitis,

Rouven Brües, Nadia Politou, and Mercedes Ajona, “D6.1 – Market Analysis.” EU

project “Policy Compass,” 2014.

